បច្ចេកវិទ្យារថយន្តទំនើប

Home » Auto Engineering

Category Archives: Auto Engineering

Petrol Engine

ម៉ាស៊ីនសាំង


ម៉ាស៊ីនសាំង (petrol engine) ឬគេហៅម្យ៉ាងទៀតថាជាម៉ាស៊ីនបញ្ឆេះដោយផ្កាភ្លើង (spark-ignition engine) គឺជាប្រភេទម៉ាស៊ីនចំហេះក្នុងដែលបំលែងថាមពលគីមី (chemical energy) ទៅជាថាមពលកម្ដៅ (thermal energy) ដោយការបញ្ឆេះប្រេងសាំង ហើយបន្ទាប់មកបំលែងថាមពលកម្ដៅទៅជាថាមពលមេកានិច (mechanical energy) តាមរយៈពីស្តុងឬផ្នុក (piston)

 

ការឌីសាញម៉ាស៊ីនសាំង

ម៉ាស៊ីនសាំង (petrol engine) មានគ្រឿងបង្គុំជាច្រើនដូចរូបភាពខាងក្រោម៖

  • ប្រអប់ម៉ាស៊ីន (engine case): គម្របក្បាលស៊ីឡាំង (cylinder head cover), ក្បាលស៊ីឡាំង (cylinder head), បន្ទប់ឡឺប្រឺកាំង (crankcase), ទម្រប្រេង (oil pan)
  • ដងបង្វិល (crank shaft drive): ផ្នុក (piston), ខ្មងផ្នុក (connecting rod), ដងបង្វិល ឬឡឺប្រឺកាំង (crankshaft)
  • ថិរវេលាម៉ាស៊ីន (engine timing): ស៊ូប៉ាប់ (valve), រឺស័រស៊ូប៉ាប់ (valve spring), កាលបុយទ័រ (rocker arms), ដងកាលបុយទ័រ (rocker-arm shaft), ដងអាកាម (camshaft), កង់ស្ពឺអាកាម (timing gear), ច្រវាក់អាកាម (timing chain) ឬរ៉កខ្សែពានអាកាម (toothed belt)
  • ប្រព័ន្ធលាយល្បាយឥន្ធនៈ (mixture formation system): ប្រព័ន្ធប៉ិចបាញ់ឥន្ធនៈ (fuel-injection system), បំពង់ហឺតខ្យល់ (intake manifold)
  • ឧបករណ៍បំពាក់បន្ថែម (auxiliary installations): ប្រព័ន្ធបញ្ឆេះ (ignition system), ប្រេងរំអិលម៉ាស៊ីន (engine lubrication), ប្រព័ន្ធស្អំកម្ដៅម៉ាស៊ីន (engine cooling), ប្រព័ន្ធបំពង់ផ្សែង (exhaust system), ប្រសិនបើចាំបាច់ ត្រូវមានប្រព័ន្ធបង្កើនកម្លាំងម៉ាស៊ីន (supercharging system)

Structure of a four-stroke spark ignition engine

 

គោលការណ៍គ្រិះនៃដំណើរការម៉ាស៊ីនសាំង

វដ្តម៉ាស៊ីនមាន៤វគ្គ (four stroke) ដូចជា វគ្គហឺតខ្យល់ (induction stroke), វគ្គបំណែនខ្យល់ (compression stroke), វគ្គថាមពល ឬវគ្គផ្ទុះឆេះ (power or combustion stroke) និងវគ្គហឺយផ្សែង (exhaust stroke)។ មួយវដ្តនៃចំហេះម៉ាស៊ីនស្មើនឹងរង្វិល២ជុំនៃឡឺប្រឺកាំង (two crank shaft revolution) អ្នកបច្ចេកទេសតែងប្រើពាក្យ 720 ដឺក្រេនៃរង្វិលឡឺប្រឺកាំង (720° crank angle)។

The four strokes of a power cycle

វគ្គហឺតខ្យល់ (induction stroke): ផ្នុកមានចលនាចុះក្រោម បង្កើនមាឌស៊ីឡាំងធ្វើឲ្យមានបម្រែបម្រួលសំពាធ 0.1 – 0.3 bar បើប្រៀបធៀបជាមួយសំពាធខ្យល់នៅខាងក្រៅស៊ីឡាំង។ ដោយសំពាធនៅខាងក្រៅស៊ីឡាំងខ្ពស់ជាងសំពាធនៅខាងក្នុងស៊ីឡាំង នោះខ្យល់ត្រូវបានស្រូបចូលក្នុងស៊ីឡាំង។ ល្បាយឥន្ធនៈ/ខ្យល់ហឺតចូលតាមបំពង់ស្រូបខ្យល់ (intake port) ឬក៏ប៉ិចបាញ់ឥន្ធនៈបាញ់លាយជាល្បាយផ្ទាល់នៅក្នុងស៊ីឡាំងតែម្តង។ ដើម្បីនាំខ្យល់ជាច្រើន និងល្បាយឥន្ធនៈទៅក្នុងស៊ីឡាំង ស៊ូប៉ាប់ហឺត (inlet valve) បើកនៅមុំ 45° នៃឡឺប្រឺកាំង (crank angle (CA)) មុនចំនុចផុតលើផ្នុក ឬ ច.ផ.ល (top dead center (TDC)) ហើយស៊ូប៉ាប់ហឺតបិទនៅមុំ 35° –  90° នៃឡឺប្រឺកាំង បន្ទាប់ពីចំនុចផុតក្រោមផ្នុក ឬ ច.ផ.ក (bottom dead center (BDC))

វគ្គបំណែនខ្យល់ (compression stroke): នៅពេលផ្នុកមានចលនាឡើងលើ ល្បាយឥន្ធនៈ/ខ្យល់ត្រូវបានបំណែនពី 7 – 12 ដងនៃមាឌស៊ីឡាំង។ ក្នុងករណីប្រព័ន្ធបាញ់ឥន្ធនៈផ្ទាល់ (direct injection) ខ្យល់ត្រូវបានបំណែនខណៈម៉ាស៊ីនមានកម្លាំងរមួលតូចដែលមានល្បឿនចាប់ពី 3,000 RPM។ ប្រេងឥន្ធនៈត្រូវបានបាញ់លាយជាល្បាយយ៉ាងលឿនមុនពេលចំហេះកើតឡើង។ កម្តៅហ្គាសក្នុងស៊ីឡាំងអាចមានចាប់ពី 400 – 500 °C ពីព្រោះហ្គាស (ឥន្ធនៈ/ខ្យល់) មិនអាចរីកមាឌនៅសីតុណ្ហភាពខ្ពស់ ដែលសំពាធបំណែនចុងក្រោយកើនឡើងដល់ 18 bar។ សំពាធខ្ពស់ជួយល្បាយឥន្ធនៈលាយបានសព្វល្អ ធ្វើឲ្យចំហេះអាចកើតមានឡើងបានយ៉ាងលឿន និងពេញលេញនៅក្នុងវគ្គទី3 ឬវគ្គថាមពល។ ស៊ូប៉ាប់ហឺត និងស៊ូប៉ាប់ហឺយបិទទាំង2នៅក្នុងវគ្គបំណែនខ្យល់។

វគ្គផ្ទុះឆេះ (combustion stroke): ចំហេះត្រូវបានកើតឡើងដោយការបង្កើតផ្កាភ្លើង (ignition spark jumping) ឆ្លងកាត់អេឡិចត្រូត (electrode) របស់ប៊ុយស៊ីឬឆ្នុកផ្លេក (spark plug)។ រយៈពេលនៅចន្លោះការឲ្យផ្លេក (ផ្កាភ្លើង) និងការបញ្ឆេះចប់សព្វគ្រប់មានប្រហែល 1/1,000 វិនាទី នៅខណៈល្បឿនចំហេះ 20m/s។ ក្នុងមូលហេតុនេះ ផ្កាភ្លើងត្រូវតែបង្កើតឡើងនៅមុំ 0° –  40° នៃឡឺប្រឺកាំងមុនចំនុចផុតលើ (TDC) ដោយអាស្រ័យលើល្បឿនម៉ាស៊ីន (engine speed) ដូច្នេះវាមានការចាំបាច់ណាស់ដែលសំពាធអតិបរមានៃចំហេះត្រូវមានចាប់ពី 30 – 60 bar បន្ទាប់ពីចំនុចផុតលើ (TDC) ។ ការរីកមាឌហើយផ្ទុះឆេះនៃហ្គាសអាចមានសីតុណ្ហភាពរហូតដល់ 2,500 °C រុញផ្នុកឲ្យឆ្ពោះទៅចំនុចផុតក្រោម (BDC) ពេលនោះហើយដែលថាមពលកម្ដៅបានបំលែងទៅជាថាមពលមេកានិច។

វគ្គហឺយផ្សែង (exhaust stroke): ស៊ូប៉ាប់ហឺយផ្សែងចាប់ផ្ដើមបើកនៅមុំ 40° –  90° មុនចំនុចផុតក្រោម (BDC) ដើម្បីបញ្ចេញផ្សែងទៅបំពង់ផ្សែង។ សំពាធនៅមានចាប់ពី 3 – 5 bar នៅចុងបញ្ចប់នៃវគ្គផ្ទុះឆេះ (power stoke) ធ្វើឲ្យផ្សែងឬហ្គាសនៅមានកម្ដៅ 900 °C បញ្ចេញមកខាងក្រៅស៊ីឡាំង។ នៅពេលផ្នុកងើបឡើងវិញ ហ្គាសឬផ្សែងដែលនៅសេសសល់ពីចំហេះម៉ាស៊ីនត្រូវបានបញ្ចេញ។ ដើម្បីបញ្ចេញផ្សែងចេញពីស៊ីឡាំង ស៊ូប៉ាប់ហឺយបិទនៅពេលបន្ទាប់ពីចំនុចផុតលើ (TDC) ខណៈពេលស៊ូប៉ាប់ហឺតកំពុងបើក។

 

លក្ខណៈពិសេសនៃម៉ាស៊ីនបញ្ឆេះដោយផ្កាភ្លើង

  • មានតំណើរការដោយប្រេងសាំង
  • របៀបលាយល្បាយប្រេងសាំង

ល្បាយក្រៅ (external mixture formation): ឥន្ធនៈ និងខ្យល់ត្រូវបានលាយជាល្បាយនៅខាងក្នុងបំពង់ហឺតខ្យល់ (intake manifold) ដែលនៅខាងក្រៅស៊ីឡាំង។

ល្បាយក្នុង (internal mixture formation): ដំបូងខ្យល់ត្រូវបានហឺតចូលស៊ីឡាំងខណៈពេលនៃវគ្គហឺតខ្យល់ (induction stroke)។ ល្បាយឥន្ធនៈ/ខ្យល់ត្រូវបានលាយចូលគ្នានៅវគ្គហឺតខ្យល់ ឬវគ្គបំណែន (compression stroke) ដោយការបាញ់ឥន្ធនៈដោយផ្ទាល់ទៅក្នុងស៊ីឡាំងតែម្តង។

  • ការបញ្ឆេះម៉ាស៊ីនត្រូវបានផ្ដល់ដោយគ្រឿងអេឡិចត្រូនិចខាងក្រៅ (externally supplied ignition)
  • មាឌចំហេះថេរ (constant-volume combustion)
  • បរិមាណនៃល្បាយឥន្ធនៈត្រូវបានកែប្រែដោយទីតាំងនៃស៊ូប៉ាប់ករបំពង់ខ្យល់ (throttle valve)

 

លក្ខណៈនៃចំហេះ

ដោយសារចំហេះនៃល្បាយឥន្ធនៈ/ខ្យល់ត្រូវប្រើរយៈពេលដ៏ខ្លី ដូចនេះឥន្ធនៈ និងម៉ូលេគុលអុកស៊ីសែនត្រូវតែនៅលាយឡំគ្នាខណៈពេលបំណែនល្បាយ។ យើងបានដឹងហើយថាឧស្ម័នអុកស៊ីសែនមានប្រហែល 20% នៃម៉ាសមាឌខ្យល់ ហើយអុកស៊ីសែនដែលធ្វើឲ្យចំហេះអាចកើតមានត្រូវបានយកចេញមកពីខ្យល់ដែលបានហឺតចូលស៊ីឡាំង សមាមាត្រទៅនឹងបរិមាណខ្យល់ដែលតម្រូវឲ្យលាយជាល្បាយឥន្ធនៈ។ តាមគោលការណ៏នៃល្បាយឥន្ធនៈ/ខ្យល់ (theoretical air requirement) គេប្រើម៉ាសខ្យល់ 14.7 kg សម្រាប់ឥន្ធនៈ 1 kg (~ 12 m3 at density of ρ = 1.29 Kg/1m3)

សារធាតុកាបូន (carbon) ដែលមាននៅក្នុងប្រេងឥន្ធនៈយកទៅបញ្ឆេះជាមួយឧស្ម័នអុកស៊ីសែន បង្កើតបានជាឧស្ម័នកាបូនឌីអុកស៊ីន (CO2) និងចំហាយទឹក (H2O)។ ឧស្ម័នអាហ្សូត (nitrogen) ដែលមាននៅក្នុងខ្យល់មិនត្រូវបានជាប់ពាក់ព័ន្ធជាមួយចំហេះនេះទេ ក៏ប៉ុន្តែវាបង្កឲ្យឧស្ម័នដ៏គ្រោះថ្នាក់មួយកើតឡើងគឺឧស្ម័នអាហ្សូតអុកស៊ីត (NOx) នៅខណៈពេលមានសំពាធ និងសីតុណ្ហភាពខ្ពស់។

ចំហេះសព្វ (complete combustion): ថាមពលគីមី (chemical energy) នៃចំហេះឥន្ធនៈបានបំលែងទៅជាថាមពលកម្ដៅ (thermal energy)។

C + O2 -> CO2 + thermal energy

2 H2 + O2 -> 2 H2O + thermal energy

ឧទាហរណ៍៖ ប្រសិនបើម៉ាស៊ីនប្រើម៉ាសខ្យល់អស់ 13 kg តម្រូវឲ្យប្រើឥន្ធនៈ 1 kg ពេលនោះល្បាយឥន្ធនៈ/ខ្យល់គឺជាល្បាយលើសខ្លាំង (too rich) ដែលមានសមាមាត្រ (1:13)។ ដោយសារខ្វះឧស្ម័នអុកស៊ីសែន មួយផ្នែកនៃកាបូនដែលឆេះគឺជាចំហេះមិនសព្វ វានឹងបង្កឲ្យកើតមានឧស្ម័នកាបូនម៉ូណូអុកស៊ីត (CO) ដែលជាឧស្ម័នពុល។

ចំហេះមិនសព្វ (incomplete combustion):

2 C + O-> 2 CO + heat

ឧទាហរណ៍៖ ប្រសិនបើម៉ាស៊ីនប្រើម៉ាសខ្យល់ 16 kg តម្រូវឲ្យប្រើឥន្ធនៈ 1 kg ពេលនោះល្បាយឥន្ធនៈខ្យល់គឺជាល្បាយខ្សត់ខ្លាំង (too lean) ដែលមានសមាមាត្រ (1:16)។

 

ចំហេះខុសប្រក្រតី (knocking combustion)

ម៉ាស៊ីនបញ្ឆេះដោយផ្កាភ្លើង (spark-ignition engine) នឹងអាចកើតមានចំហេះខុសប្រក្រីនៅក្នុងស៊ីឡាំងម៉ាស៊ីន ឬគេតែងតែហៅថាណុក (engine knocking) កើតឡើងនៅពេលល្បាយឥន្ធនៈ/ខ្យល់ឆាប់ឆេះដោយខ្លួនឯងបន្ថែមក្រៅពីចំណុចផ្ទុះឆេះដោយឆ្នុកផ្លេក (spark plug)

ណុក (knocking) គឺជាបាតុភូតមួយដែលកើតឡើងនៅពេលដែលមានចំនុចតូចៗនៃល្បាយឥន្ធនៈឆាប់ឆេះដោយខ្លួនឯងក្រៅព្រំដែនចំហេះធម្មតានៃល្បាយឥន្ធនៈ (boundary of normal combustion)។

Knocking phenomenon

ណុក កើតឡើងពីការប្រើប្រាស់ឥន្ធនៈដែលមានគុណភាពអន់ (unsuitable fuels) ហើយណុកក៏អាចកើតឡើងដោយសារកត្តាមួយចំនួនទៀតដូចជា៖

  • ម៉ាស៊ីនឲ្យចំហេះលឿនខ្លាំងពេក (excessive advanced ignition)
  • ប្រព័ន្ធបាញ់ឥន្ធនៈបង្កើតល្បាយមិនស្មើរគ្នានៅក្នុងស៊ីឡាំង
  • ការផ្ទេរកម្ដៅមិនបានល្អដោយារកំណកការបូននៅក្នុងស៊ីឡាំង (carbon-residue deposits)
  • ប្រព័ន្ធស្អំកម្ដៅម៉ាស៊ីនមានដំណើរការមិនស្រួល (fault cooling system)
  • មានការបំណែនខ្យល់ខ្លាំងហួសហេតុពេក (excessively high compression ratio)។ ឧ- នៅពេលម៉ាស៊ីនប្រើទ្រនាប់ក្បាលម៉ាស៊ីនស្ដើងពេក (thinner cylinder head gasket)

knocking combustion and pressure characteristic

ម្យ៉ាងទៀតណុក (knocking) ក៏អាចកើតឡើងដែរនៅពេលអ្នកបន្ថែមល្បឿនខ្លាំងពេក (full load) ខណៈពេលម៉ាស៊ីនកំពុងមានល្បឿនយឺត (low engine speeds)។ វាតែងតែកើតឡើងដោយសារការប្រើប្រាស់ប្រេងសាំងដែលមានកម្រិតអុកតានទាប (insufficient octane number) និងដោយសារឆ្នុកផ្លេក (spark plug) ផ្ដល់ផ្កាភ្លើងមិនត្រឹមត្រូវពេល។

នៅមានកត្តាមួយចំនួនទៀតដែលបង្កឲ្យកើតមានបាតុភូតម៉ាស៊ីនមានចំហេះខុសប្រក្រតីដែលយើងមិនបានលើកយកមកនិយាយឲ្យបានក្បោះក្បាយប៉ុន្តែសូមមើលវីឌីអូពន្យល់ខាងក្រោមអំពីបាតុភូតមួយនេះ (engine knocking phenomenon)!

 


Tetextbook by EUROPA LEHRMITTEL, Modern Automotive Technology
The German Edition was Written by Technical Instructor, Engineers and Technicians
Prepared by Tiv Dararith, Mechanical Engineer at Institute of Technology of Cambodia

LSD

Limited Slip Differential


Limited slip differentials (LSD) are used in automobile to overcome the traction difference problem of drive wheels. In this article working of LSD is explained in a logical manner.


Problem with the Standard Differential

Consider a situation where a vehicle fitted with a standard differential moves straight, and one drive wheel is on a surface with good traction and the other wheel is on a slippery track. In a standard differential the left and right axle rotations are completely independent. Since one wheel is on a slippery track, the standard differential will make that wheel spin in excessive speed, while the good traction wheel will remain almost dead. This means high power supply to the slippery wheel and low power flow to the good traction wheel. So the vehicle won’t be able to move.

Fig.1 In a standard differential power from the engine is transferred to the wheel with low traction

Fig.1 In a standard differential power from the engine is transferred to the wheel with low traction

One way to overcome this problem is to limit the independency or relative motion between the left and right axles. Limited slip differentials are introduced for this purpose. One of the most commonly used LSD technology is clutch-pack based.

Constructional Features of LSD

First we will go through constructional features of LSD. The basic components of a standard differential are shown below. It has got pinion gear, ring gear, case, spider gears and side gears.

Fig.2 The basic components of a standard differential

Fig.2 The basic components of a standard differential

To understand working of a standard differential please check this link . Apart from its basic components a Limited slip differential has got a series of friction and steel plates packed between the side gear and the casing. Friction discs are having internal teeth and they are locked with the splines of the side gear. So the friction discs and the side gear will always move together.

Fig.3 It is clear from the figure that steel plates are locked with the case and friction disc with the side gear

Fig.3 It is clear from the figure that steel plates are locked with the case and friction disc with the side gear

Steels plates are having external tabs and are made to fit in the case groove. So they can rotate with the case.

If any of the clutch pack assembly is well pressed, the frictional force within them will make it move as a single solid unit. Since steel plates are locked with the case and friction discs with the side gear, in a well pressed clutch pack casing and the clutch pack will move together. Or motion from the casing is directly passed to the corresponding axle.

Space between the side gears is fitted with a pre-load spring. Pre load spring will always give a thrust force and will press clutch pack together.

Fig.4 Pre-load spring in an LSD will always give a thrust force; The blue arrow represents thrust force

Fig.4 Pre-load spring in an LSD will always give a thrust force; The blue arrow represents thrust force

Separating Action of Bevel Gears

You can note that spider and side gear are bevel gears. It has got one specialty. When torque is transmitted through a bevel gear system axial forces are also induced apart from the tangential force. The axial force tries to separate out the gears.

Fig.5 During power transmission through a bevel gear system axial forces are also induced

Fig.5 During power transmission through a bevel gear system axial forces are also induced

You can note that side gear and axle are 2 separate units. The side gear has got a small allowance for axial movement.

Fig.6 Side gear and axle are two separate units as shown; So the side gear can have small axial movement

Fig.6 Side gear and axle are two separate units as shown; So the side gear can have small axial movement

So during high torque transmission through spider-side gear arrangement, a high separating thrust force is also transmitted to the clutch pack. This force presses and locks the clutch pack assembly against wall of the casing.

Working of Limited Slip Differential

Now back to the initial problem. Since one wheel is on a high traction surface, the torque transmitted to it will be higher. So the thrust force developed due to the bevel gear separation action also will be high at that side. Thus clutch pack at high traction wheel side will be pressed firmly and clutch pack will be locked. So power from the differential casing will flow directly to high traction axle via clutch pack assembly.

Fig.7 Thrust force induced due to the bevel gear separation action is high for the high traction wheel

Fig.7 Thrust force induced due to the bevel gear separation action is high for the high traction wheel

On the other hand clutch pack on the low traction wheel side is not engaged yet, so power flow will be limited to that side. So the vehicle will be able to overcome the traction difference problem.

Fig.8 Low thrust force at low traction wheel will allow steel plate and friction disc to slip

Fig.8 Low thrust force at low traction wheel will allow steel plate and friction disc to slip

However while taking a turn the LSD can act like a normal differential. In this case thrust force developed due to bevel gear separation action won’t be that high. So the plates in clutch pack will easily overcome frictional resistance and will be able to slip against each other. Thus the right and left wheel can have different speed just like an open differential.

Following are the other commonly used technologies used to overcome the drive wheel traction difference problem.

  • Clutch pack – Pressure disk type
  • Torsen®
  • Cone Differential
  • Hydraulic Locking Type

Documents Origin Have Source From LE (Learn Engineering TV) Located in India
Prepared by Tiv Dararith, Mechanical Engineer at Institute of Technology of Cambodia

Torsen

Torsen Differential


Torsen Differential, How it Works ?

Torsen is a trade mark of the JTEKT Corporation. The Torsen differential has many patented components and, is the most unique and ingenious method of providing differential action while overcoming the traction difference problem. This article gives a logical introduction to the working of Torsen differential.

 


The Internal Components

The internal components of a Torsen are quite different from that of a conventional differential. An exploded view of the Torsen is given in Fig.1.

Fig.1 An exploded view of Torsen differential

Fig.1 An exploded view of Torsen differential

At the heart of the system lies a specially shaped gear pair assembly. Let’s see the cross sectional shape of these gears at the mating point. As can be seen, one gear is a spur gear, and the other one is a worm gear.

Fig.2 A worm gear-worm wheel mesh lies at the heart of the Toresn; Cross sectional shape of the figure is shown in the second part

Fig.2 A worm gear-worm wheel mesh lies at the heart of the Toresn; Cross sectional shape of the figure is shown in the second part

A Torsen works on the simple principle of worm gear- worm wheel; that is a spinning worm gear can rotate the wheel, but the rotating wheel cannot spin the worm gear.

Fig.3 The worm gear- worm wheel principle lies at the heart of the Torsen operation

Fig.3 The worm gear- worm wheel principle lies at the heart of the Torsen operation

Throughout this discussion, just keep this principle in mind. A pair of such worm wheels are fitted with the case, so the engine power received by the case is transferred to the worm wheels. Each end of the wheels is fitted with a spur gear. As a result, a simplified Torsen differential will look as shown in the Fig.4.

Fig.4 The complete Torsen differential

Fig.4 The complete Torsen differential

Now we will go through different driving scenarios and understand how the Torsen manages to operate the vehicle well.

The Vehicle Moves Straight

When the vehicle moves straight, the worm wheels will push and turn the worm gears. So both the drive wheels will rotate at the same speed. Please note here that, in this condition the worm wheels do not spin on its own axis. In this condition, the whole mechanism moves as a single solid unit.

Fig.5 When the vehicle moves straight, worm wheels just push and turn the worm gears at the same speeds.

Fig.5 When the vehicle moves straight, worm wheels just push and turn the worm gears at the same speeds.

The vehicle takes a right turn

When the vehicle is negotiating a right turn, the left wheel needs to rotate at a higher speed than the right wheel. This fact is clear from the Fig.6.

Fig.6 During a right turn the left wheel has to travel more distance

Fig.6 During a right turn the left wheel has to travel more distance

This speed differential is perfectly supported in a Torsen. Please note that the worm wheel is subjected to relative motion not the absolute motion. The worm wheel is fitted between the case and worm gear, so the relative motion between the case and worm gear is what makes the worm gear turn.

The worm gear of the faster left axle will make the corresponding worm wheel spin on its own axis. On the other side, relative to the case the slow right axle is turning in the opposite direction; thus the right worm wheel will spin in the opposite direction. The meshing spur gears at the ends of worm wheel will make sure that, the worm wheels are spinning at the same speed. Thus it guarantees a perfect differential action. Perfect differential action implies equal amount of speed loss and speed gain to the right and left wheels. With the perfect differential the vehicle will be able to negotiate a smooth turn.

Fig.7 The right worm wheel will spin opposite to the right worm wheel; this is due to the opposite relative motion left worm wheel is experiencing

Fig.7 The right worm wheel will spin opposite to the right worm wheel; this is due to the opposite relative motion left worm wheel is experiencing

While taking a left turn the worm wheels will spin in an exact opposite way to that shown in Fig.7.

Overcoming the Traction difference problem

Now let’s try to understand how the Torsen overcomes the drive wheel traction difference problem. As you might be aware, when your vehicle encounters a situation as shown, the slippery wheel starts to spin very rapidly and will draw the majority of the engine’s power. As a result, the vehicle will get stuck.

Fig.8 A typical traction difference problem a vehicle is experiencing

Fig.8 A typical traction difference problem a vehicle is experiencing

But, if a Torsen differential is used in this case, as soon as the slippery wheel starts to spin excessively, the speed change will be transferred to the corresponding worm wheel. The right worm wheel transfers the speed change to the left worm wheel, since they are connected through spur gears. Here comes the tricky part! The left side worm wheel will not be able to turn the corresponding worm gear, because, as we said, a worm wheel cannot drive a worm gear! As a result, the whole mechanism gets locked, and the left and right wheels turn together.

Fig.9 The excessive speed of slipping wheel make the system locked due to the 'basic principle of worm gear-worm wheel'

Fig.9 The excessive speed of slipping wheel make the system locked due to the ‘basic principle of worm gear-worm wheel’

This allows a large amount of power to be transferred to the high-traction wheel, and the vehicle can thereby overcome the traction difference problem. To carry the load 2 more worm wheel pairs are added.

Pros and Cons

If you are familiar with the other common technologies used to overcome the traction difference problem, you might have noticed a great advantage of the Torsen. While the other technologies allow the drive wheel to slip for a limited amount of time before it gets locked, in Torsen the locking action is instantaneous. That means as soon as the vehicle encounters a traction difference track the wheels will get locked. They are also compact compared to their counter parts.

Following are the some disadvantages of the Torsen type (T1) explained here.

  • Noisy
  • Costly
  • More difficult to assemble

Documents Origin Have Source From LE (Learn Engineering TV) Located in India
Prepared by Tiv Dararith, Mechanical Engineer at Institute of Technology of Cambodia

Differential

Differential


How does a Differential Work ?

The differential is an integral part of all four wheelers. Differential technology was invented centuries ago and is considered to be one of the most ingenious inventions human thinking has ever produced. In this video, we will learn, in a logical manner, why a differential is needed in an automobile and its inner workings.

Why the Differential Gear is Used?

Wheels receive power from the engine via a drive shaft. The wheels that receive power and make the vehicle move forward are called the drive wheels. The main function of the differential gear is to allow the drive wheels to turn at different rpms while both receiving power from the engine.

Fig.1 Power from the engine is flowed to the wheels via a drive shaft

Fig.1 Power from the engine is flowed to the wheels via a drive shaft.

Consider these wheels, which are negotiating a turn. It is clear that the left wheel has to travel a greater distance compared to the right wheel.

Fig.2 While taking a right turn the left wheel has to travel more distance; this means more speed to left wheel

Fig.2 While taking a right turn the left wheel has to travel more distance; this means more speed to left wheel.

This means that the left wheel has to rotate at a higher speed compared to the right wheel. If these wheels were connected using a solid shaft, the wheels would have to slip to accomplish the turn. This is exactly where a differential comes in handy. The ingenious mechanism in a differential allows the left and right wheels to turn at different rpms, while transferring power to both wheels.Parts of a Differential

We will now learn how the differential achieves this in a step-by-step manner using the simplest configuration. Power from the engine is transferred to the ring gear through a pinion gear. The ring gear is connected to a spider gear.

Fig.3 Motion from the pinion gear is transferred to the spider gear

Fig.3 Motion from the pinion gear is transferred to the spider gear

The spider gear lies at the heart of the differential, and special mention should be made about its rotation. The spider gear is free to make 2 kinds of rotations: one along with the ring gear (rotation) and the second on its own axis (spin).

Fig.4 Spider gear is free to make 2 kinds of rotations

Fig.4 Spider gear is free to make 2 kinds of rotations

The spider gear is meshed with 2 side gears. You can see that both the spider and side gears are bevel gears. Power flow from the drive shaft to the drive wheels follows the following pattern. From the drive shaft power is transferred to the pinion gear first, and since the pinion and ring gear are meshed, power flows to the ring gear. As the spider gear is connected with the ring gear, power flows to it. Finally from the spider gear, power gets transferred to both the side gears.

Fig.5 The basic components of a standard differential

Fig.5 The basic components of a standard differential.

Differential Operation

Now let’s see how the differential manages to rotate the side gears (drive wheels) at different speeds as demanded by different driving scenarios.

The Vehicle Moves Straight

In this case, the spider gear rotates along with the ring gear but does not rotate on its own axis. So the spider gear will push and make both the side gears turn, and both will turn at the same speed. In short, when the vehicle moves straight, the spider-side gear assembly will move as a single solid unit.

Fig.6 While the vehicle moves straight, the spider gear does not spin; it pushes and rotate the side gears

Fig.6 While the vehicle moves straight, the spider gear does not spin; it pushes and rotate the side gears.

The Vehicle Takes a Right Turn

Now consider the case when the vehicle is taking a right turn. The spider gear plays a pivotal role in this case. Along with the rotation of the ring gear it rotates on its own axis. So, the spider gear is has a combined rotation. The effect of the combined rotation on the side gear is interesting.

Fig.7 To get peripheral velocity at left and right side of spider gear we have to consider both rotation and spin of it

Fig.7 To get peripheral velocity at left and right side of spider gear we have to consider both rotation and spin of it.

When properly meshed, the side gear has to have the same peripheral velocity as the spider gear. Technically speaking, both gears should have the same pitch line velocity. When the spider gear is spinning as well as rotating, peripheral velocity on the left side of spider gear is the sum of the spinning and rotational velocities. But on the right side, it is the difference of the two, since the spin velocity is in the opposite direction on this side. This fact is clearly depicted in Fig.7. This means the left side gear will have higher speed compared to the right side gear. This is the way the differential manages to turn left and right wheels at different speeds.

The Vehicle Takes a Left Turn

While taking a left turn, the right wheel should rotate at a higher speed. By comparing with the previous case, it is clear that, if the spider gear spins in the opposite direction, the right side gear will have a higher speed.

Fig.8 While taking left turn the spider gear spins in opposite direction

Fig.8 While taking left turn the spider gear spins in opposite direction

Use of More Spider Gears

In order to carry a greater load, one more spider gear is usually added. Note that the spider gears should spin in opposite directions to have the proper gear motion. A four-spider-gear arrangement is also used for vehicles with heavy loads. In such cases, the spider gears are connected to ends of a cross bar, and the spider gears are free to spin independently.

Fig.9 Double spider gear arrangement is usually used to carry more loads

Fig.9 Double spider gear arrangement is usually used to carry more loads

Other Functions of the Differential

Apart from allowing the wheels to rotate at different rpm differential has 2 more functions. First is speed reduction at the pinion-ring gear assembly. This is achieved by using a ring gear which is having almost 4 to 5 times number of teeth as that of the pinion gear. Such huge gear ratio will bring down the speed of the ring gear in the same ratio. Since the power flow at the pinion and ring gear are the same, such a speed reduction will result in a high torque multiplication.

You can also note one specialty of the ring gear, they are hypoid gears. The hypoid gears have more contact area compared to the other gear pairs and will make sure that the gear operation is smooth.

The other function of the differential is to turn the power flow direction by 90 degree.

Drawback of a Standard Differential

The differential we have gone through so far is known as open or standard differential. It is capable of turning the wheels at different rpm, but it has got one major drawback. Consider a situation where one wheel of the vehicle is on a surface with good traction and the other wheel on a slippery track.

Fig.10 A standard differential vehicle on different traction surfaces will not be able to move

Fig.10 A standard differential vehicle on different traction surfaces will not be able to move.

In this case a standard differential will send the majority of the power to the slippery wheel, so the vehicle won’t be able to move. To overcome this problem, Limited Slip Differentials are introduced. We will learn more about them in a separate article.


Documents Origin Have Source From LE (Learn Engineering TV) Located in India
Prepared by Tiv Dararith, Mechanical Engineer at Institute of Technology of Cambodia

Manual Transmission

Manual Transmission


How It Works ?

Manual transmission, or simply a gearbox, has been serving automobiles well for many decades. Even today it’s the most popular form of transmission. Globally manual transmission accounts for 52% of market share as per 2013 data. In this video, we’ll give a conceptual introduction on the workings of an actual manual transmission with a reverse gear.

 

Why the Transmission is Required?

The basic question, is why transmission is required in an automobile? The power generated by the engine flows through the transmission before it reaches the drive wheels.The basic function of the transmission is to control the speed and torque available to the drive wheels for different driving conditions.

Fig.1 Power flow in an automobile; the power from engine to drive wheels is transferred through a drive train

Fig.1 Power flow in an automobile; the power from engine to drive wheels is transferred through a drive train.

For example, if you want to climb a hill, you need more torque. By reducing the speed at the transmission, we will be able to achieve higher torque for the same power input. This is simply conservation of energy. Power transmission through a shaft is torque times angular velocity of the shaft. When you reduce the speed of the shaft, it will automatically result in increase in the torque transmission. Conversely, if the torque demand is low , we can increase the transmission speed. These 2 cases are depicted in Fig.2.

Fig.2 During a climb the wheels need more torque; during descent the reverse is the case

Fig.2 During a climb the wheels need more torque; during descent the reverse is the case.

The Basic Working Principle

Now let’s look at its inner workings. Manual transmissions work on the simple principle of gear ratio. As shown in Fig.3 a different output speed can be achieved by meshing gears of different size. The speed ratio is given by the simple equation shown in the figure (N represents speed, T represents number of teeth).

Fig.3 The basic principle of a gear pair

Fig.3 The basic principle of a gear pair.

Sliding Mesh Transmission

Sliding mesh is the one of the earlier type of manual transmission technology, and the one which is easiest to understand. The most basic slidngmesh transmission mechanism is shown in the Fig.4. Here the input and output shafts are connected through a counter shaft.

Fig.4 First and second gear in a sliding mesh transmission; the red line represents the power flow

Fig.4 First and second gear in a sliding mesh transmission; the red line represents the power flow.

This mechanism can operate under 2 different configurations. In the firs configuration, the output shaft will turn at a slower speed than the input. Just by sliding output gear and connecting the output shaft with the input will result in the second configuration. It is clear that, here the input and out will turn at the same speed. Direction of the power flow is represented as red dotted lines in the Fig.4.

A 3-speed mechanism will look as shown in the Fig.5. For the gear meshing shown in the figure, the output shaft will rotate at its slowest speed (1st Gear).It is clear that just by sliding the gears we can achieve different transmission ratios, such as 2nd and 3rd gears.

Fig.5 Three speed sliding mesh transmission: first gear is shown in the figure

Fig.5 Three speed sliding mesh transmission: first gear is shown in the figure.

The sliding mesh transmission is good for controlling the speed, but they have an inherent disadvantage. It’s quite tricky to slide from one gear and engage with another gear. A technology known as double clutching should be used for achieving a smooth slide of gears. The driver should possess a good skill to do an effective double clutching. Maintenance associated with the double clutch transmissions are quite frequent too.

Solving the Sliding Problem – Synchromesh Transmission

The synchro mesh transmission permanently solves this problem. Here the gears are always in mesh, but with a major difference. Here the output gears are loosely connected to the shaft. You can see from Fig.6 that there is a small clearance between the output gears and shaft.

Fig.6 Synchromesh transmission: Here the gear pairs are always in mesh

Fig.6 Synchromesh transmission: Here the gear pairs are always in mesh.

If we connect only one gear to the shaft at a time, the shaft will have the speed of the connected gear.

Understanding the basis using a Hypothetical connector

We will first use a hypothetical connector to illustrate how different gear ratios work in the sycnhromesh transmission. Later on we will move to the actual technology. With the help of the hypothetical connector, different gear ratios are illustrated in Fig.5. It is interesting to note that in 4th gear the input and output shafts are directly connected. This means the output and input shaft will have the same speed in 4th gear.

Fig.7 First and Fourth gear are illustrated in this figure with help of a hypothetical connector

Fig.7 First and Fourth gear are illustrated in this figure with help of a hypothetical connector.

The art of locking a loosely held gear to the shaft effectively and smoothly lies at the heart of the manual transmission. Let’s see how this is done in actual practice.

Synchronizer Cone-Teeth Arrangement

First of all, the main shaft gears have a synchronizer cone-teeth arrangement as illustrated in Fig.8.

Fig.8 Synchronizer cone teeth arrangement of synchromesh transmisson

Fig.8 Synchronizer cone teeth arrangement of synchromesh transmission.

hub is fixed to the shaft. A sleeve that is free to slide over the hub is also used in this system.

Fig.9 When the sleeve and synchronizer teeth are engaged the locking action can be achieved

Fig.9 When the sleeve and synchronizer teeth are engaged the locking action can be achieved.

It is clear that, if the sleeve gets connected with the teeth of the synchronizer cone, the gear and shaft will turn together, or the desired locking action will be achieved. But during the gearbox operation, the shaft and gear will be rotating at different speeds. So such a locking action is not an easy task.

Use of Synchronizer ring

A synchronizer ring helps to match the speed of the gear with that of the shaft. The synchronizer ring is capable of rotating along with the hub, but is free to slide axially. Before moving the sleeve, the clutch pedal is pressed. This way power flow to the gear is discontinued.

Fig.10 A synchronizer cone is placed between a hub and synchronzier cone

Fig.10 A synchronizer cone is placed between a hub and synchronzier cone.

When we move the sleeve, the sleeve will press the synchronizer ring against the cone. Due to the high frictional force between the synchronizer ring and cone, the speed of the gear will become the same as the shaft. At this time, the sleeve can be slid in further, and it will get locked with the gear. Thus, the gear gets locked with the shaft in an efficient and smooth way.

Fig.11 Movement of sleeve brings the synchronizer teeth and sleeve to the speed, after that the locking is achieved

Fig.11 Movement of sleeve brings the synchronizer teeth and sleeve to the speed, after that the locking is achieved.

Different Gear Ratios

What we have seen in last section was the technology behind the 2nd gear. In the same way the other gear ratios are also achieved. The details are described in this session.

Under Drive – 1st, 2nd and 3rd

In under drive the output shaft turns at a lower speed than the input. For the manual transmission technology we are explaining 1st , 2nd and 3rd gear ratios fall under the under drive category. The following figure depicts the sleeve motion required for 1st and 3rd gear.

Fig.12 The first and third gear of a manual transmission

Fig.12 The first and third gear of a manual transmission.

Direct Drive

As the name suggests in direct drive, the output and input shafts turn at the speed. For this purpose the output and input shafts are directly coupled using the synchronizer cone-sleeve mechanism. The hub is fixed to the output shaft, when the sleeve gets connected with the synchronizer teeth of the input shaft, they get coupled together. During the direct drive, the sleeve at the third gear position (2nd part Fig.12) should move to left side.

Over Drive

A 5th gear is used to turn the output shaft at a higher speed than the input shaft. You can note here that unlike the other gear pairs, in 5th gear the output shaft gear is smaller than the counter shaft gear. This generates the overdrive scenario.

Fig.13 The arrangement of 5th gear.

Fig.13 The arrangement of 5th gear.

You can note more difference in the 5th drive configuration, the output gear is fixed to the shaft and the counter shaft gear is loosely connected. As a result synchroizer ring – sleeve mechanism is arranged on the counter shaft. The sole purpose of such an arrangement is to accommodate the reverse gear mechanism. We will see that in next session.

The sleeve motion is controlled by a shift stick . You can also see the mechanism used for controlling the sleeve with the shift stick. You can note that using this mechanism, not more than one sleeve will be engaged with the output gears. That is important, since engaging 2 sleeves at a time will lead to an impossible turning condition.

The Reverse Gear

Now let’s see how the reverse gear works? The reverse gear uses a 3-gear arrangement, as shown. Out of those, one is the idle gear.

Fig.14 The three gear arrangement of a reverse gear

Fig.14 The three gear arrangement of a reverse gear.

It is clear that addition of one more gear will turn the output shaft gear in the reverse direction. For engaging the reverse gear the idle gear is pushed and connected to the other 2 gears. Thus the required output shaft rotation in the reverse direction can be achieved. Please note here that the reverse gear does not have a synchronizer ring mechanism. This means that, the gearbox rotation has to stop completely before applying the reverse gear.
Fig.15 The idle gear is pushed and connected with the other 2 gears to achieve the reverse operation

Fig.15 The idle gear is pushed and connected with the other 2 gears to achieve the reverse operation.

You might have noticed that in reverse gear, your vehicle moves in a very low speed. As you can see from the figure the three gear arrangement gives speed reduction in 2 stages. This results in very low output speed (high torque). Generally the reverse has a gear ratio of 4:1 (input speed : output speed).


Documents Origin Have Source From LE (Learn Engineering TV) Located in India
Prepared by Tiv Dararith, Mechanical Engineer at Institute of Technology of Cambodia

Diesel Vs Petrol

ម៉ាស៊ីនសាំង ​Vs ម៉ាស៊ីនម៉ាស៊ូត


ប្រភេទម៉ាស៊ីនសាំង ​(petrol engine) និងម៉ាស៊ីនម៉ាស៊ូត (diesel engine) ត្រូវបានប្រើប្រាស់ជាម៉ាស៊ីនចំហេះក្នុង ​(internal combustion engine (ICE)) ​ដែលវាមានតំណើរការប្រហាក់ប្រហែលនឹងគ្នា មានចំនុចខុសគ្នា និងអត្ថប្រយោជន៍ក៏ខុសគ្នាផងដែរ។

វីដេអូខាងក្រោមនេះបង្ហាញអំពីភាពខុសគ្នា និងគុណសម្បត្តិរវាងម៉ាស៊ីនសាំង និងម៉ាស៊ីនម៉ាស៊ូត ដែលមានការពន្យល់ជាលក្ខណៈវិទ្យាសាស្រ្ត។ នៅចុងបញ្ចប់នៃអត្ថបទបច្ចេកទេសនេះ លោកអ្នកនឹងបានស្វែងយល់អំពីផលនៃការចាក់ប្រេងសាំងទៅក្នុងម៉ាស៊ីនម៉ាស៊ូត និងបញ្រ្ជាសមកវិញ។

 

គោលការណ៍គ្រឹះនៃម៉ាស៊ីន៤វគ្គ ​(basic operation of 4 stroke engine)

ម៉ាស៊ីនសាំង និងម៉ាស៊ីនម៉ាស៊ូតមានគោលការណ៍ដំណើរការ៤វគ្គ (basic 4 strokes) ដូចគ្នា ៖ វគ្គហឺតខ្យល់ចូលម៉ាស៊ីន ​(intake stroke), វគ្គបំណែន ​(compression stroke), វគ្គចំហេះ ឬថាមពល ​(power stroke) និងវគ្គហឺយផ្សែងចេញ (exhaust stroke)។ នៅក្នុងវគ្គហឺតខ្យល់ (intake stroke) ខ្យល់ត្រូវបានស្រូបចូលទៅក្នុងស៊ីឡាំង (cylinder)។ វគ្គបំណែន (compression stroke) ខ្យល់ត្រូវបានបំណែនទៅជាហ្គាសក្ដៅ (hot gas)។ បន្ទាប់មកឥន្ធនៈត្រូវបានបញ្ឆេះជាមួយហ្គាសក្តៅ​ ហើយផ្ដល់ថាមពលសម្រាប់វគ្គថាមពល ​(power stroke)។ សូមចង់ចាំថាវគ្គថាមពលគឺវគ្គដែលម៉ាស៊ីនធ្វើឲ្យពីស្តុង ឬផ្នុក (piston) ទទួលយកថាមពលពីចំហេះឥន្ធនៈ។ វគ្គចុងក្រោយគឺជាវគ្គហឺយផ្សែងចេញ (exhaust stroke) ពីផ្នែកខាងក្នុងស៊ីឡាំងទៅបរិយាកាសខាងក្រៅ។ សូមមើលរូបភាពនៃវគ្គនីមួយៗខាងក្រោម!

Fig.1 Both the petrol and diesel engines have the common 4 strokes

Fig.1 Both the petrol and diesel engines have the common 4 strokes.

 

ហេតុអ្វីត្រូវមានម៉ាស៊ីនពីរប្រភេទខុសគ្នាដូចនេះ?

មានភាពខុសគ្នារវាងម៉ាស៊ីនសាំង និងម៉ាស៊ីនម៉ាស៊ូតគឺដោយសារភាពខុសគ្នានៃចំហេះប្រេងសាំង និងប្រេងម៉ាស៊ូត។ ប្រេងសាំង (petrol) គឺជាឥន្ធនៈងាយភាយជាចំហាយ (volatile fuel) ដូចនេះវាមានប្រសិទ្ធិភាពបំផុតក្នុងការលាយជាល្បាយជាមួយខ្យល់។ ជាលទ្ធិផលគេគ្រាន់តែប្រើផ្កាភ្លើងដើម្បីបង្កើតចំហេះសព្វរវាងឥន្ធនៈនិងខ្យល់។ ដូចដែលអ្នកអាចមើលរូបខាងក្រោមគឺប្រេងសាំងមានចំណុចឆេះនៅសីតុណ្ហភាពទាប (low flash point)។ ចំនុចឆេះ (flash point) គឺជាចំនុចដែលអាចឲ្យល្បាយឥន្ធនៈ/ខ្យល់ឆាបឆេះបានដោយខ្លួនឯងនៅសីតុណ្ហភាពទាបបំផុត។

Fig.2 The difference in chemical property causes all the differences

Fig.2 The difference in chemical property causes all the differences.

ចំណែកឯប្រេងម៉ាស៊ូត (diesel) ជាឥន្ធនៈដែលមិនងាយភាយជាចំណាយ (less volatile fuel) អ្នកអាចកត់សម្គាល់បានថាប្រេងម៉ាស៊ូតគឺមានចំនុចឆេះខ្ពស់ (high flash point value)។ ប៉ុន្តែប្រសិនបើអាតូមប្រេងម៉ាស៊ូត (atomized diesel) បាញ់ចូលលាយជាល្បាយជាមួយខ្យល់ដែលមានសីតុណ្ហភាពខ្ពស់ (high-temperature air) នៅពេលដំណាលគ្នានោះចំហេះនឹងកើតឡើង។

 

ភាពខុសគ្នារវាងម៉ាស៊ីនសាំង និងម៉ាស៊ីនម៉ាស៊ូត

នៅក្នុងម៉ាស៊ីនសាំង ល្បាយឥន្ធនៈ/ខ្យល់ត្រូវបានលាយទុកមុនពេលចំហេះ (pre-mixed) ប៉ុន្តែម៉ាស៊ីនម៉ាស៊ូត ល្បាយឥន្ធនៈ/ខ្យល់លាយគ្នានៅពេលចំហេះតែម្ដង។ ដោយសារមូលហេតុនេះ ម៉ាស៊ីនម៉ាស៊ូតប្រើប៉ិចឥន្ធនៈ(fuel injector) បាញ់ប្រេងម៉ាស៊ូតលាយជាមួយខ្យល់ក្តៅនឹងផ្ទុះឆេះ ចំណែកម៉ាស៊ីនសាំងប្រើឆ្នុកផ្លេក (spark plug) ដើម្បីបង្កើតផ្លេកឬផ្កាភ្លើងដើម្បីបញ្ឆេះល្បាយប្រេងសាំង។

Fig.3 In diesel engines fuel and air comes into contact only during the combustion; In Petrol it is already mixed

Fig.3 In diesel engines fuel and air comes into contact only during the combustion; In Petrol it is already mixed.

មនុស្សមួយចំនួនមានការភាន់ច្រឡំដែលថាបច្ចេកវិទ្យាម៉ាស៊ីនរថយន្តប្រើសាំងសម័យថ្មី (modern petrol engine) ប្រើប្រាស់ប៉ិចបាញ់ប្រេងសាំងដោយផ្ទាល់ (gasoline direct injection (GDI)) មានចំហេះកើតឡើងខណៈពេលប៉ិចបាញ់សាំង នេះជាការយល់ច្រឡំមួយ ទោះបីជាម៉ាស៊ីនសាំងទំនើបប្រើប្រាស់ប្រព័ន្ធ GDI ក៍នៅតែត្រូវការឆ្នុកផ្លេក (spark plug) បង្កើតផ្កាភ្លើងបញ្ឆេះម៉ាស៊ីនផងដែរ។ បច្ចេកវិទ្យាបាញ់ឥន្ធនៈដោយផ្ទាល់ (direct injection technology) គ្រាន់តែជាវិធីសាស្រ្តថ្មីប្រើសម្រាប់បង្កើតល្បាយឥន្ធនៈ/ខ្យល់ឲ្យកាន់សព្វល្អ (fine petrol-air mixture)។ ជំនួសឲ្យការប្រើប្រាស់បេនសាំងឬកាបួរ៉ាទ័រ (carburetor) គេប្រើប៉ិចបាញ់ឥន្ធនៈ (fuel injector) ដើម្បីលាយល្បាយឥន្ធនៈនិងខ្យល់ ហើយនេះគឺជាបច្ចេកវិទ្យាថ្មី។ ផលប្រយោជន៍ធំបំផុតនៃការបាញ់ឥន្ធនៈដោយផ្ទាល់ (direct injection method) គឺឥន្ធនៈអាចបាញ់ចេញជាចំហាយឬស្រ្ពាយហើយប្រព័ន្ធអេឡិចត្រូនិចអាចគ្រប់គ្រងការប្រើប្រាស់ឥន្ធនៈបានយ៉ាងសុក្រឹតបំផុត ករណីនេះនឹងជួយម៉ាស៊ីនឲ្យអាចសន្សំសំចៃប្រេងឥន្ធនៈ។

Fig.4 A close view of fuel injector and spark plug.

Fig.4 A close view of fuel injector and spark plug.

 

ហេតុអ្វីម៉ាស៊ីនម៉ាស៊ូតមានទំងន់ធ្ងន់?

អ្នកប្រហែលជាអាចកត់សម្គាល់ឃើញថាដំណើរការម៉ាស៊ីនសាំងមានសំលេងស្ងាត់ និងមានរំញ័រតិចជាងម៉ាស៊ីនម៉ាស៊ូត។ នេះក៏ដោយសាររបៀបឆេះនៃល្បាយលាយទុកជាមុននៃម៉ាស៊ីនសាំងគឺមានភាពរលូន និងមានល្បាយសព្វល្អ (សូមរូបខាងក្រោម)។ ចំណែកឯនៅក្នុងម៉ាស៊ីនម៉ាស៊ូត ចំហេះអាចផ្ទុះឆេះនៅកន្លែងមួយចំនួននៅក្នុងបន្ទប់ចំហេះ (combustion chamber) ហើយវានឹងឈានទៅក្លាយជាដំណើរការចំហេះដែលមិនអាចគ្រប់គ្រងបាន (uncontrolled process)។

Fig.5 Combustion is smooth and well propagating in petrol engine, but in diesel it is highly unpredictable

Fig.5 Combustion is smooth and well propagating in petrol engine, but in diesel it is highly unpredictable.

ដោយសារមូលហេតុនេះ ដើម្បីកាត់បន្ថយរំញ័រខ្លាំងហួសប្រមាណ និងសំលេងរំខាន ម៉ាស៊ីនម៉ាស៊ូតតម្រូវឲ្យមានការឌីសាញរចនាសម្ព័ន្ធរឹងមាំ (rugged structural design) ជាងម៉ាស៊ីនសាំង។ ដើម្បីធ្វើឲ្យម៉ាស៊ីនមានលំនឹងល្អ ម៉ាស៊ីនម៉ាស៊ូតតម្រូវមានកង់យោងធំហើយធ្ងន់ (heavy fly wheel)។

 

ហេតុអ្វីបានជាម៉ាស៊ីនម៉ាស៊ូតប្រើប្រាស់ឥន្ធនៈតិចជាងម៉ាស៊ីនសាំង

វគ្គបំណែនរបស់ម៉ាស៊ីនម៉ាស៊ូតគឺបំណែនតែខ្យល់ ហើយវាអាចបង្កើតសមាមាត្រឬអត្រាបំណែន (compression ratio) បានល្អដោយមិនការផ្ទុះឆេះដោយឯកឯងមុនវគ្គចំហេះ (self-ignition)។ ចំណែកឯម៉ាស៊ីនសាំងដែលមានការលាយល្បាយឥន្ធនៈទុកមុន មិនអាចបង្កើតអត្រាបំណែនបានខ្ពស់ដូចម៉ាស៊ីនម៉ាស៊ូតនោះទេ។ ប្រសិនបើយើងចង់បង្កើនអត្រាបំណែន (increase compression ratio) នៅក្នុងម៉ាស៊ីនសាំង ល្បាយឥន្ធនៈ/ខ្យល់នឹងឆាប់ផ្ទុះឆេះដោយខ្លួនឯង ឬផ្ទុះឆេះមុនពេលកំណត់ បាតុភូតនេះគេហៅថាណុក (knocking) ដែលនៅពេលម៉ាស៊ីនប្រឹងខ្លាំងលាន់លឺសម្លេងគ្រឹកៗ ប្រសិនបើវាកើតឡើងយូទៅៗ នោះវានឹងធ្វើម៉ាស៊ីនខូចខាត។

Fig.6 Variation of mechanical efficiency of the engine with compression ratio

Fig.6 Variation of mechanical efficiency of the engine with compression ratio.

មូលហេតុមួយទៀតដែលម៉ាស៊ីនម៉ាស៊ូតអាចបរបានឆ្ងាយជាងម៉ាស៊ីនសាំង ដោយសារអត្រាបំណែនម៉ាស៊ីនទាំងពីរខុសគ្នា អត្រាបំណែន (compression ratio) កាន់តែធំ ទិន្នផលនៃចលនាបរកាន់តែបានឆ្ងាយ សូមមើលសមីការបន្ទាត់ខាងលើបង្ហាញអំពីអត្រាបំណែនម៉ាស៊ីនទាំងពីរប្រភេទដែលផ្ដល់ថាមពលទៅឲ្យរថយន្ត។

 

តើមានអ្វីនឹងកើតឡើងនៅពេលអ្នកចាក់សាំងទៅក្នុងម៉ាស៊ីនម៉ាស៊ូត និងបញ្រ្ជាសមកវិញ?

នេះគឺជាសំនួរដ៏គួរឲ្យចាប់អារម្មណ៍មួយដែលមនុស្សជាច្រើនមានការងឿងឆ្ងល់ថានឹងមានអ្វីកើតឡើង? យោងតាមការសិក្សារបស់ពួកយើងអំពីម៉ាស៊ីនទាំងពីរប្រភេទ យើងនឹងផ្ដល់ចម្លើយមួយតាមលក្ខណៈវិទ្យាសាស្រ្ត និងសមហេតុសមផល។

  • ចាក់ប្រេងម៉ាស៊ូតទៅក្នុងម៉ាស៊ីនសាំង

នៅពេលអ្នកចាក់ប្រេងម៉ាស៊ូតទៅក្នុងម៉ាស៊ីនសាំង នោះម៉ាស៊ីននឹងមិនអាចបញ្ឆេះបានទេ មូលហេតុសាមញគឺប្រេងម៉ាស៊ូតមិនងាយភាយជាចំហាយ (less volatile) ហើយវានឹងមិនងាយលាយចូលជាមួយខ្យល់។ តាមការពិតទៅ វាមិនអាចទៅរួចនោះទេដើម្បីបង្កើតល្បាយឥន្ធនៈម៉ាស៊ូតនិងខ្យល់ (diesel-air mixture)  ដោយប្រើកាបួរ៉ាទ័រ (carburetor) ឬប៉ិចបាញ់ឥន្ធនៈ (fuel injector) ដូចនេះវាមានន័យថាអ្នកបង្កើតផ្កាភ្លើងទៅបញ្ឆេះល្បាយខ្សត់ឥន្ធនៈ (poor quality mixture) នោះគឺវាមិនអាចបង្កើតចំហេះក្នុងម៉ាស៊ីនបានទេ។

  • ចាក់ប្រេងសាំងទៅក្នុងម៉ាស៊ីនម៉ាស៊ូត

ប្រសិនបើអ្នកច្រឡំចាក់សាំងចូលក្នុងម៉ាស៊ីនម៉ាស៊ូត ពេលនោះម៉ាស៊ីនបាញ់ប្រភេទឥន្ធនៈដែលមានបំភាយខ្លាំង (highly volatile fuel) ទៅក្នុងបន្ទប់ចំហេះដែលមានខ្យល់ក្ដៅបំណែន ករណីនេះវានឹងធ្វើឲ្យមានការផ្ទុះឆេះមុនពេលកំណត់ (detonation) និងធ្វើឲ្យម៉ាស៊ីនដំណើរការខុសប្រក្រតី បន្ទាប់មកវានឹងបង្កធ្វើឲ្យគ្រឿងបង្គុំម៉ាស៊ីនខូចខាត។ លើសពីនេះទៅទៀត ប្រេងម៉ាស៊ូតមានមុខងារជួយរំអិលគ្រឿងក្នុងស្នប់ឥន្ធនៈ (fuel pump) និងប្រព័ន្ធបាញ់ឥន្ធនៈ (injection system)។ នៅពេលដែលអ្នកចាក់សាំងទៅក្នុងម៉ាស៊ីនម៉ាស៊ូត ដែលប្រេងសាំងមិនអាចផ្ដល់ភាពរំអិលទៅឲ្យគ្រឿងបង្គុំដែលបានរៀបរាប់ខាងលើ នឹងបង្កឲ្យគ្រឿងបង្គុំប្រព័ន្ធស្នប់ឥន្ធនៈខូចខាត។ សរុបសេចក្តីមកគឺមានបញ្ហាច្រើនណាស់នឹងកើតឡើងប្រសិនបើអ្នកច្រឡំចាក់ប្រេងសាំងទៅក្នុងម៉ាស៊ីនម៉ាស៊ូត។


Textbook by LearnEngineering Organization in India
Prepared by Tiv Dararith, Mechanical Engineer at Institute of Technology of Cambodia

Diesel Engine

ម៉ាស៊ីនម៉ាស៊ូត


ម៉ាស៊ីនចំហេះក្នុង (internal combustion engine (ICE)) បំលែងថាមពលគីមី (chemical energy) នៃចំហេះឥន្ធនៈទៅជាថាមពលមេកានិច (mechanical rotational energy)។ ម៉ាស៊ីនម៉ាស៊ូត (diesel engine) គឺជាប្រភេទម៉ាស៊ីនចំហេះក្នុងដែលត្រូវបានបម្រើដល់ការធ្វើដំណើរ និងការងារផ្សេងៗរបស់មនុស្សជាង១សតវត្សរ៍មកហើយ ហើយវាជាប្រភេទម៉ាស៊ីនដែលសន្សំសំចៃឥន្ធនៈបានល្អណាស់។


A detailed webpage version of the video is given below

មុននឹងចូលដល់ការបកស្រាយសម្អិតនិងស៊ីជម្រៅអំពីម៉ាស៊ីនម៉ាស៊ូត យើងសូមណែនាំអ្នកទាំងអស់គ្នាអំពីពាក្យបច្ចេកទេសដែលពួកយើងបានបង្កើតឡើងដើម្បីជាជំនួយដល់ការបកប្រែអត្ថបទបច្ចេកទេសរថយន្ត ក្នុងនោះមានពាក្យបច្ចេកទេសខ្លះពួកយើងបានបង្កើតថ្មី និងនៅប្រើពាក្យកម្ចីពីពាក្យបារាំងនៅឡើយ អាស្រ័យហេតុនេះពួកយើងសង្ឃឹមថានៅពេលអ្នកអានមិនសូវយល់អំពីពាក្យបង្កើតថ្មី សូមចុចលើពាក្យនោះ ពួកយើងនឹងមាន link មួយពន្យល់ពាក្យដែលពួកយើងបង្កើតថ្មី។ សូមមើលរូបភាពខាងក្រោម!

mechanical components

 

គោលការណ៏មូលដ្ឋាននៃដំណើរការម៉ាស៊ីនម៉ាស៊ូត

ម៉ាស៊ីនម៉ាស៊ូតគឺជាប្រភេទម៉ាស៊ីនដែលមានទិន្នផលខ្ពស់ពីការបំលែងថាមពលគីមីនៃប្រេងម៉ាស៊ូត ទំរង់អាតូមនៃប្រេងម៉ាស៊ូតត្រូវបានធ្វើឲ្យប៉ះជាមួយខ្យល់ដែលមានសីតុណ្ហភាព និងសំពាធខ្ពស់។ ថាមពលគីមីបញ្ចេញថាមពលចំហេះដូចរូបភាពបង្ហាញខាងក្រោម។ ម៉ាស៊ីនម៉ាស៊ូតអាចបង្កើតទិន្នផលថាមពលមេកានិចបានល្អណាស់។

 

When an atomized form of diesel is made to contact high temperature and pressure air it leads to the release of chemical energy

Fig.1. When an atomized form of diesel is made to contact high temperature and pressure air it leads to the release of chemical energy.

 

ដូចនេះប្រតិបត្តិការម៉ាស៊ីនម៉ាស៊ូតគឺដើម្បីបង្កើតខ្យល់ដែលមានសីតុណ្ហភាព និងសំពាធខ្ពស់ជាបន្តបន្ទាប់គ្នា។ យើងនឹងដឹងថាតើវាអាចទៅរួចបានយ៉ាងដូចម្ដេចដែរនៅក្នុងអត្ថបទខាងក្រោមនេះ។

 

គោលការគ្រឹះនៃគ្រឿងបង្គុំម៉ាស៊ីនម៉ាស៊ូត

ពីស្តុងឬផ្នុក (piston), ខ្មងផ្នុក (connection rod), ឡឺប្រឺកាំង (crankshaft) និងស៊ីឡាំង (cylinder) មានទំរង់មេកានិចដែលគេហៅថាដងរវៃមេកានិច (slider-crank mechanism)។ រូបខាងក្រោមគឺជាចលនាលីនេអ៊ែរ (ចលនាត្រង់ (linear motion)) នៃផ្នុកមួយដែលបានបំលែងទៅជាចលនារង្វិល (rotatory motion)។

 

Fig.2 Using Slider-Crank mechanism linear motion of the piston is transformed into rotary motion at the crank

Fig.2 Using Slider-Crank mechanism linear motion of the piston is transformed into rotary motion at the crank.

 

ខណៈពេលផ្នុក (piston) មានចលនា ចំណុចឡើងខ្ពស់បំផុតនៅខាងលើក្បាលផ្នុកគេហៅថា ចំណុចផុតលើ ឬ ច.ផ.ល (Top Dead Centre (TDC)) និងចំណុចចុះទាបបំផុតនៅខាងលើក្បាលផ្នុកគេហៅថាចំណុចផុតក្រោម ច.ផ.ក (Bottom Dead Centre (BDC))

នៅក្នុងម៉ាស៊ីនចំហេះក្នុង គ្រឿងបង្គុំមេកានិចមានតំណើរការនៅក្នុងតួម៉ាស៊ីន (engine block) ចំណែកក្បាលស៊ីឡាំង (cylinder head), ស៊ូប៉ាប់ (valves) និងប៉ិចឥន្ធនៈ (fuel injects) ត្រូវបានបំពាក់នៅផ្នែកខាងលើក្បាលស៊ីឡាំង។

 

Fig.3 The engine block support the Slider-crank mechanism; Cylinder head is fitted above the engine block.

Fig.3 The engine block support the Slider-crank mechanism; Cylinder head is fitted above the engine block.

 

ដំណើរការ

ខណៈពេលផ្នុក (piston) មានចលនាចុះក្រោម ស៊ូប៉ាប់ហឺត (intake valve) បើកហើយស្រូបខ្យល់ចូលពីបំពង់ខ្យល់ខាងក្រៅ ម្យ៉ាងទៀតគេអាចនិយាយថាវាជាដង្ហើមម៉ាស៊ីន (engine breathes) ដែលវគ្គនេះគឺជាវគ្គហឺតខ្យល់ (intake stroke)។

Fig.4 During the suction stroke fresh air which is rich in Oxygen content is sucked in

Fig.4 During the suction stroke fresh air which is rich in Oxygen content is sucked in.

 

ខណៈពេលផ្នុកត្រឡប់មកវិញ ស៊ូប៉ាប់ហឺត (intake valves) និងស៊ូប៉ាប់ហឺយ (exhaust valves) ត្រូវបានបិទ ហើយខ្យល់នៅក្នុងស៊ីឡាំងត្រូវបានបំណែន។ ពេលនោះគឺជាវគ្គបំណែនខ្យល់ (compression stroke) ផ្នុក (piston) ធ្វើការដោយសារខ្យល់បំណែន ដូចនេះសីតុណ្ហភាព និងសំពាធខ្យល់កើនឡើងទៅដល់កម្រិតមួយដែលខ្ពស់ជាងចំនុចឆេះដោយខ្លួនឯង (self-ignition value) របស់ឥន្ធនៈម៉ាស៊ូត។

Fig.5 During compression stroke, the piston does work on the air; so both its pressure and temperature rises

Fig.5 During compression stroke, the piston does work on the air; so both its pressure and temperature rises.

 

ប្រេងម៉ាស៊ូតត្រូវបានបាញ់ចូលលាយឡំជាមួយខ្យល់ដែលបានបំណែន (compressed air) នៅពេលដំណាលគ្នានោះឥន្ធនៈបានភាយជាចំណាយហើយផ្ទុះឆេះអាស្រ័យនឹងសំពាធ និងសីតុណ្ហភាពដែលកើនឡើងខ្ពស់នៅក្នុងបន្ទប់ចំហេះ។

Fig.6 Atomized form of fuel is injected into the compressed air.

Fig.6 Atomized form of fuel is injected into the compressed air.

 

ថាមពលផ្ទុះឆេះរុញផ្នុកចុះក្រោម (piston downwards) ដែលវាបំលែងថាមពលទៅជាថាមពលមេកានិច (mechanical energy)។ នេះគឺជាវគ្គតែមួយគត់ដែលផ្នុកអាចស្រូបយកថាមពលពីការផ្ទុះឆេះនៃប្រេងម៉ាស៊ូត ដែលគេហៅថាវគ្គថាមពល (power stroke)។

Fig.7 During the power stroke piston absorbs power from the high energy gas

Fig.7 During the power stroke piston absorbs power from the high energy gas.

 

ដោយសារនិចលភាពនៃប្រព័ន្ធមេកានិចធ្វើឲ្យផ្នុកងើបឡើងលើវិញម្ដងទៀត ខណៈពេលនោះស៊ូប៉ាប់ហឺយ (exhaust valves) ចាប់ផ្ដើមបើកនាំផ្សែងបញ្ចេញមកបំពុងផ្សែង ហើយស៊ូប៉ាប់ហឺតចាប់ផ្ដើមបើកស្រូបខ្យល់ចូលម្តងទៀត គ្រប់វគ្គមានដំណើរការដូចគ្នាដដែលៗ ដែលវាមានវគ្គសរុប៤វគ្គ។

Fig.8 Here exhaust valve is open and the exhaust is rejected.

Fig.8 Here exhaust valve is open and the exhaust is rejected.

 

ផ្នុករបស់ម៉ាស៊ីនម៉ាស៊ូត 

អ្នកប្រហែលជាមានការកត់សម្គល់ថានៅលើក្បាលផ្នុកម៉ាស៊ីនម៉ាស៊ូត (diesel engine piston) មានចង្អូររាងដូចជាគូថចានគោម។ ខណៈពេលវគ្គបំណែនខ្យល់ (compression stroke) ចង្អូរនៅលើក្បាលផ្នុកនោះជួយបង្កើតឲ្យមានខ្យល់គួចយ៉ារហ័សបំផុត (rapidly swirling) នាំឲ្យការបាញ់ឥន្ធនៈម៉ាស៊ូតអាចលាយជាល្បាយជាមួយខ្យល់មានប្រសិទ្ធភាពបំផុត។

 

Fig.9 The bowl above the diesel engine piston helps to create a rapidly swirling air

Fig.9 The bowl above the diesel engine piston helps to create a rapidly swirling air.

 

ការឌីសាញប្រព័ន្ធមេកានិចម៉ាស៊ីនម៉ាស៊ូត

ការផលិតម៉ាស៊ីនម៉ាស៊ូតគឺជាកិច្ចការដ៏ពិបាកមួយ ប៉ុន្តែវាពិតជាគួរឲ្យចាប់អារម្មណ៍ណាស់ព្រោះរបៀបវារៈនៃចំហេះម៉ាស៊ីនម៉ាស៊ូតមិនអាចឆេះបានដោយរលូន គឺវាឆាប់នឹងមានរំញ័រ និងសម្លេងរំខាន បើគេប្រៀបធៀបជាមួយម៉ាស៊ីនសាំង ដូច្នេះហើយទើបម៉ាស៊ីនម៉ាស៊ូតតម្រូវឲ្យមានរចនាសម្ព័ន្ធរឹងមាំ មានន័យថាលោហៈធាតុដែលយកមកផលិតម៉ាស៊ីនម៉ាស៊ូតត្រូវតែជាលោហៈធាតុធន់នឹងកម្ដៅ និងមានភាពរឹងមាំ។

វគ្គទាំង៤នៃម៉ាស៊ីន មានវគ្គថាមពល (power stroke) តែមួយគត់ដែលមានកំម្លាំងយ៉ាងខ្លាំងរុញផ្នុក (piston) សង្កត់ចុះក្រោម ដូចនេះប្រសិនបើគេឌីសាញម៉ាស៊ីនដែលមានស៊ីឡាំងតែមួយ (single cylinder) នោះម៉ាស៊ីននោះតែងតែមានកម្លាំងខ្លាំងមិនស្រុះគ្នា (high force nonuniform) ហើយពេលនោះថាមពលដែលបញ្ចេញមកក្រៅ (output power) តែងតែប្រែប្រួលខុសពីភាពធម្មតារបស់ម៉ាស៊ីន។ សូមមើលសមីការ ឬបម្រែបម្រួលកម្លាំងខាងក្រៅជាមួយនឹងចលនាផ្នុកនៅក្នុងរូបខាងក្រោម។

 

Fig.10 The variation of piston force and output power of a single cylinder engine

Fig.10 The variation of piston force and output power of a single cylinder engine.

 

ម៉ាស៊ីនម៉ាស៊ូតនឹងមានតំណើរការយ៉ាងលូនប្រសិនបើគេឌីសាញចំនួនស៊ីឡាំងច្រើន។ យើងសូមលើកឧទាហរណ៍ម៉ាស៊ីនម៉ាស៊ូតដែលមានស៊ីឡាំង៤ (four cylinders engine) ហើយស៊ីឡាំងនីមួយមានវគ្គខុសៗគ្នា។

 

Fig.11 In a 4 cylinder engine all the 4 strokes occur at a time.

Fig.11 In a 4 cylinder engine all the 4 strokes occur at a time.

 

ដូច្នេះវគ្គថាមពល (power stroke) គឺត្រូវកើតមានឡើងគ្រប់ពេលនៃតំណើរការម៉ាស៊ីន។ កម្លាំង និងថាមពលសរុបរបស់ម៉ាស៊ីនស៊ីឡាំង4 ត្រូវបានបង្ហាញក្នុងរូបខាងក្រោម។ យោងតាមដ្យាក្រាមខ្សែខាងក្រោមបង្ហាញយ៉ាងច្បាស់ថាម៉ាស៊ីនម៉ាស៊ូតស៊ីឡាំង4មានកម្លាំងនិងថាមពលស្រុះគ្នា។ សរុបសេចក្តីមកម៉ាស៊ីនដែលមានស៊ីឡាំងកាន់តែច្រើន មានតំណើរការកាន់តែល្អនិងមានភាពរលូន។

Fig.12 Total force in a 4 cylinder engine

Fig.12 Total force in a 4 cylinder engine.

Fig.13 Total power in a 4 cylinder engine

Fig.13 Total power in a 4 cylinder engine.

 

ម៉ាស៊ីនដែលមានស៊ីឡាំង4ជាធម្មតាតំណើរការដោយមានលំដាប់ឆេះ 1-3-4-2 ដែលលំដាប់ឆេះនេះហើយជាអ្នកធ្វើឲ្យប្រាកដថាកម្លាំងផ្ទុះឆេះត្រូវបានធ្វើឲ្យម៉ាស៊ីនមានលំនឹង។

 

Fig.14 Generally an IC engine operates on the firing of 1-3-4-2

Fig.14 Generally an IC engine operates on the firing of 1-3-4-2

 

កង់យោងធន់ធ្ងន់ (heavy flywheel) ដែលធ្វើការជាអ្នកស្តុកថាមពលវង្វិលជំនួយឲ្យម៉ាស៊ីនមានតំណើរការរលូន នៅពេលដែលម៉ាស៊ីនផ្ដល់កម្លាំងរមួលខ្លាំង កង់យោងជាអ្នកស្រូបយកកម្លាំងរមួលនោះ ហើយខណៈពេលម៉ាស៊ីនតំណើរការយឺត កង់យោងបញ្ចេញថាមពលទៅឲ្យម៉ាស៊ីនវិញ ដូច្នោះថាមពលដែលម៉ាស៊ីនបញ្ចេញមកខាងបក្រៅ (power output) ទទួលបានទិន្នផលខ្ពស់ សូមមើលរូបភាពខាងក្រោម។

 

Fig.15 The flywheel helps to smooth out the output power

Fig.15 The flywheel helps to smooth out the output power.

 

មានអតុល្យភាពកម្លាំងកើតឡើងជាទម្រង់ឌីណាម៉ិច (dynamic unbalance) ដោយសារមានម៉ាសហួសប្រមាណ (excessive mass) នៃផ្នែកខ្នងរបស់ផ្នុក (connecting rod) ដូចនេះដើម្បីធ្វើឲ្យកម្លាំកបុកចុះងើបឡើងនៃផ្នុកមានតុល្យភាពឬមានលំនឹងគេប្រើដុំទម្ងន់ (counter weight)។

 

Fig.16 Counter weights are provided on the crank side to balance the dynamic force of the connecting rods

Fig.16 Counter weights are provided on the crank side to balance the dynamic force of the connecting rods.

 

តំណើរការបិទ/បើកស៊ូប៉ាប់ (controlling valve operation) ត្រូវបានប្រតិបត្តិដោយត្រឹមត្រូវបំផុត ស៊ូប៉ាប់បិទ/បើកបានដោយសារដងអាកាម (camshaft) ចំណែកដងអាកាមមានចលនាដោយសារម៉ាស៊ីន។

 

Fig.17 Camshafts help to operate the intake and exhaust valve quite accurately.

Fig.17 Camshafts help to operate the intake and exhaust valve quite accurately.

 

ឡឺប្រឺកាំង (crankshaft) វិលបាន២ជុំនៃវង្វិលជុំពេញមួយវដ្តម៉ាស៊ីន (complete engine cycle) ប៉ុន្តែស៊ូប៉ាប់ហឺត/ស៊ូប៉ាប់ហឺយ (intake/exhaust valves) បើកតែមួយដងគត់ វាមានន័យថាដងអាកាម (camshaft) ត្រូវតែវិលពាក់កណ្ដាលល្បឿននៃឡឺប្រឺកាំង (crankshaft)។ ការកាត់បន្ថយល្បឿនជុំដងអាកាមអាចធ្វើទៅបានដោយឌីសាញទំហំកង់បង្វិលដងអាកាម (camshaft sized wheel) ឲ្យខុសគ្នា២ដងនៃទំហំឡឺប្រឺកាំង។

ចុច Link ខាងក្រោមចូលទៅអានអត្ថបទអំពីភាពខុសគ្នារវាងម៉ាស៊ីនសាំង និងម៉ាស៊ីនម៉ាស៊ូត៖

ម៉ាស៊ីនសាំង (petrol engine) Vs ម៉ាស៊ីនម៉ាស៊ូត (diesel engine)

petrol engine vs diesel engine

 


Textbook by LearnEngineering Organization in India
Prepared by Tiv Dararith, Mechanical Engineer at Institute of Technology of Cambodia